
READ-OVERFLOW 1
ID: 808-BSI | Version: 2 | Date: 5/16/08 2:39:31 PM

READ-OVERFLOW
Must ensure that the buffer is large enough to hold the number of bytes read

Sean Barnum, Cigital, Inc. [vita1]

Copyright © 2007 Cigital, Inc.

2007-04-02

Part "Original Cigital Coding Rule in XML"
Mime-type: text/xml, size: 5896 bytes

Attack Category • Malicious Input

Vulnerability Category • Buffer Overflow

• Input source (not really attack)

Software Context • File I/O

Location • unistd.h

Description The read function attempts to read nbyte bytes from
the file associated with the open file descriptor,
fildes, into the buffer pointed to by buf.

If nbyte is 0, read will return 0 and have no other
results.

On files that support seeking (for example, a regular
file), the read starts at a position in the file given by
the file offset associated with fildes. The file offset is
incremented by the number of bytes actually read.

Files that do not support seeking (for example,
terminals) always read from the current position. The
value of a file offset associated with such a file is
undefined.

If fildes refers to a socket, read is equivalent to recv
(3SOCKET) with no flags set.

No data transfer will occur past the current end-of-
file. If the starting position is at or after the end-of-
file, 0 will be returned. If the file refers to a device
special file, the result of subsequent read requests is
implementation dependent.

If the value of nbyte is greater than SSIZE_MAX,
the result is implementation dependent.

The developer must ensure that the buffer is large
enough to hold the number of bytes read. This is
most commonly a problem when an input file stream
contains a 'count' for the number of bytes to follow.
If the attacker can corrupt this and specify a number
of bytes significantly larger than the amount of
buffer space available, he could overrun a buffer.

1. http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html (Barnum, Sean)

http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html

READ-OVERFLOW 2
ID: 808-BSI | Version: 2 | Date: 5/16/08 2:39:31 PM

APIs Function Name Comments

fread

pread

read

fstat

Method of Attack Overflows can occur as the result of an outright
attack. For example, in some situations, an attacker
can corrupt data for a buffer overflow during a file
read. If the number of characters to be read is larger
than the buffer space allocated, a buffer overflow
will occur.

Other scenarios occur when, for example, the read()
function is embedded within a loop. Very
often care is not taken to ensure that the maximum
number of bytes in the target is not overrun while in
the middle of such a loop.

Exception Criteria

Solutions Solution
Applicability

Solution
Description

Solution
Efficacy

Generally
applicable

Perform explicit
checks to
ensure that the
buffer is not
exceeded.

Ensure that the
buffer is null
terminated.

Signature Details ssize_t read (int fildes , void *buf, size_t nbyte)

Examples of Incorrect Code /* 1) signedness - DO NOT DO THIS.
*/
char *buf;
int i, len;

read(fd, &len, sizeof(len));

/* OOPS! We forgot to check for <
0 */
if (len > 8000) { error("too
large length"); return; }

buf = malloc(len);
read(fd, buf, len); /* len casted
to unsigned and overflows */

/* An example of an ERROR for some
64-bit architectures,
if "unsigned int" is 32 bits and
"size_t" is 64 bits: */

READ-OVERFLOW 3
ID: 808-BSI | Version: 2 | Date: 5/16/08 2:39:31 PM

void *mymalloc(unsigned int size)
{ return malloc(size); }

char *buf;
size_t len;

read(fd, &len, sizeof(len));

/* we forgot to check the maximum
length */

/* 64-bit size_t gets truncated to
32-bit unsigned int */
buf = mymalloc(len);
read(fd, buf, len);

/* 3) integer overflow */
char *buf;
size_t len;

read(fd, &len, sizeof(len));
/* forgot to check buffer length
*/

buf = malloc(len+1); /* +1 can
overflow to malloc(0) */
read(fd, buf, len);
buf[len] = '\0';

Examples of Corrected Code /* This at least ensures that the
buffer is terminated correctly */
read(0, buf, sizeof(buf)-1);
buf[sizeof(buf)-1] = '\0';

Source References • ITS4 Source Code Vulnerability Scanning Tool
2

• read() man page

• http://howtos.linux.com/howtos/Secure-
Programs-HOWTO/dangers-c.shtml

Recommended Resource

Discriminant Set Operating System • Windows

Languages • C

• C++

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

http://www.cigital.com/its4/
http://howtos.linux.com/howtos/Secure-Programs-HOWTO/dangers-c.shtml
http://howtos.linux.com/howtos/Secure-Programs-HOWTO/dangers-c.shtml

READ-OVERFLOW 4
ID: 808-BSI | Version: 2 | Date: 5/16/08 2:39:31 PM

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

mailto:copyright@cigital.com

